UCB CS189/289A: Introduction to Machine Learning
课程简介
- 先修要求:微积分,线性代数,概率论,算法,Python,一些基础的矩阵求导知识
- 参考材料:Elements of Statistical Learning by Trevor Hastie, Robert Tibshirani, and Jerome Friedman
- 主要内容:Theoretical foundations, algorithms, methodologies, and applications for machine learning. Topics include supervised methods for regression and classication (linear models, trees, neural networks, ensemble methods, instance-based methods); generative and discriminative probabilistic models; deep learning models including CNNs, Transformers, graph neural networks for vision and language tasks; and Markovian models for reinforcement learning and robotics.
个人心得
我在学习完 CS229 之后利用这门课进行了知识点的补充。同 CS229 一样,这门课也有非常详尽的 notes 可供阅读,并且还对外公布了所有课程作业和解答,非常适合用于和 CS229 结合起来学习,口感甚佳。
相关链接
- 课程网站:https://eecs189.org/
- 课程视频:B 站,Youtube
- 课程教材:Elements of Statistical Learning